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and being smaller than the corresponding parallel plat(

line with comparable attenuation and power handling

characteristics. The guide geometry and magnetic fielc

configuration are appropriate for the fabrication of fer.

rite devices employing transverse magnetization.

The measure-ments-of guide wavelength, rate of fielc

. 0 decay and attenuation verify the theoretically predictec
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Fig. 1 l—Comparison of the measured and theoretical total attenua-
tion of the trough line TEN mode as a function of frequency.

properties of this structure.
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Coupling of Modes in Uniform, Composite

Waveguides*

L. C. BAHIANA~ AND L. D. SMULLIN~

Summary—The principle of coupling of modes is used to com-

pute the phase constant in a uniform waveguide Iilled with two

ditferent dielectric materials. The natural modes of two hypothetical

waveguides iilled with the dtierent dielectrics are computed. The

propagation of the combined system is computed by considering the

coupling between the two sets of modes. Comparison is made be-

tween the approximate theory and an exact theory.

1. INTRODUCTION

T

HE expression “uniform, composite waveguide”

is used in this paper to describe any hollow metal-

lic cylinder of arbitrary cross section filled with

two or more homogeneous isotropic materials. Both the

structure and the materials are uniform in the direction

of propagation. Familiar examples of uniform, compos-

ite waveguides are waveguides partly filled with dielec-

tric or magnetic material. The solution of the boundary

value problem in such waveguides invariably leads to

transcendental equations. Numerical solutions for a

few particular cases have been published.’
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A different formulation of the problem is presented

here and applied to the case of lossless waveguides con-

taining two media. The fields are expressed in terms of

the natural modes of two hypothetical waveguides,

found by imposing short-circuit ( z X ~ = O) or open-

circuit ( E X ~ = O) constraints at the boundary between

the two media. Maxwell’s equations are then trans-

formed, by the use of conventional techniques, into an

infinite set of coupled transmission-line equations. Al-

though this formulation is completely general, its prac-

tical usefulness stems from the possibility of obtaining

approximate solutions without cumbersome numerical

computation.

II. FORMULATION OF THE PRO BLENI

A. Equivalent Cuvem! Sheets

Fig. 1 shows the cross section of a composite wave-

guide. Surface S1 is the metallic envelope. Surface SZ is

the boundary between the two media. The solution of

Maxwell’s equations in medium 1 is unique if either

6 X ~ or % X ~ is specified over the boundary. The same

is true of medium 2. Let ZX~~(S2), where ~z is the un-

known field in region 2, be specified over S2. Then we

can solve Maxwell’s equations in medium 1. In order tc

do this, surface Sz is replaced by a metallic wall S (short

circuit, with fi X ~ = O) and a magnetk current sheet

Km= z X ~z(SZ). Mathematically, this is equivalent tc
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transforming a homogeneous differential equation with

inhomogeneous boundary conditions into an inhomo-

geneous differential equation with homogeneous bound-

ary conditions. The solution of Maxwell’s equations in

medium 1 gives us the tangential magnetic field,

fix HI(sZ), at the boundary .&. Next, we solve Max-

well’s equations in medium 2, with n X 771(S2) specified

over S2. This time, we replace the surface .$ by a mag-

netic wall S (open-circuit, with ti X ~ = O) and an electric

current sheet Z.= z X 771(SJ. BY this procedure, we

have split the original boundary value problem into

one of two conventional waveguides, driven by electric

or magnetic surface currents (Fig. 2). The two hypo-

thetical waveguides will be called subwaveguides 1

and 2.

I

Fig. 1—Composite waveguide of arbitrary cross section.
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Fig. 2—Equivalent driving currents and boundary constraints.

B. ShoYt- Circuit and Open- CiYcuit Expansions

The fields in the subwaveguides can be expanded in

terms of E-modes and H-modes that satisfy either short-

circuit or open-circuit conditions at the common

boundary. If the fictitious wall S is short-circuited, the

modes will be short-circuit modes; if S is open-circuited,

the modes will be open-circuit modes. In either case,

the modes are solutions of the scalar Helmholtz equa-

tion. These modes form a complete set.

The E-modes are given by the following:

(1)

where 1? is the propagation constant, ~ is the unit vector

in the z-direction, ~ satisfies the equation Vi2$+Pe2q5 = O,

and the boundary conditions are:

~ = O over S and S1

@ = O over SI

n }. V@ = O over S

The H-modes are given by
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for short-circuit modes,

for open-circuit modes.

the following:

~ _ ph’ +,

z
r

(2)

where I’ is the propagation constant, # satisfies the

equation VtZ#+P~g# = O, and the boundary conditions

are:

n. V# = O over S and S1 for short-circuit modes,

~= Oover S

}
for open-circuit modes

n. Vt$ = O over S1

In terms of these modes, the transverse fields in either

subwaveguide can be expressed2 as

77, = ~ Ij(z)&($, y). (3)
j= 1

This expansion includes both Z and 77 modes, but the

choice of the imaginary wall determines whether they

are short-circuit or open-circuit modes.

If we use the orthogonality condition,

then the amplitudes Vi and Ij for thejth mode are

s
Vj(z) = (Z~. IZ,j X ~)da

f
~j(z) = (~,” ~ X ~,j)da,

(4)

(5)

and the integration is extended over the cross section

of the subwaveguide.

C. Solution of Maxwell’s Equations in the Subwavegu~des

Maxwell’s equations for harmonic time-dependence

in a loss-free region containing electric and magnetic

currents are

VXZ=–jupR–~mand

vxz=jueE+7e.

After separating the fields into longitudinal and trans-

verse components, the use of (3) yields, for the longi-

tudinal components,

z H. A Haus, “Microwave Circuits, ” Course 6.621, Class Nates,
Mass. Inst. of Tech., Cambridge, Mass.; 1959. (unpubhshed.)
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(6)

By using (3)–(6), the transverse part of Maxwell’s

equations for the jth mode can be transformed into the

following:

(7)

Equations of this form have been derived, for metallic

waveguides, by Marcuvitz.3 They are extended here for

open-circuit modes. Detailed proofs are omitted.

D. Coupled Transmission-Line Equations

The coupling equations for a composite waveguide

containing two media will now be derived. The subscript

j has been retained for the subwaveguide with the short

circuit imposed at the wall, and the subscript k has been

used for the subwaveguide with the open circuit im-

posed at the boundary.

For the short-circuited subwaveguide,

7. = z.(s) = ‘it x E“(s),

7. = o, (8)

where ~O(S) is the electric field in the open-circuited sub-

waveguide at the boundary S.

Similarly, for the open-circuited subwaveguide,

7. = Kg(s) = ‘n x 77’(s),

7m = o.

Use of (7)–(9) yields the coupling equations:

(9)

3 N. Marcuvitz, “Representation of electric and magnetic fields, ”
J.A@pl. Phys., vol. 22, pp. 806-819; June, 1951.

where the sums are over all the modes of the opposite

subwaveguide, and the coupling terms M and N are

given by

and

)

The integrals are taken along the boundary, in the

transverse plane. The subscripts j and k have been used

on p and q to avoid inserting a second subscript. They

are necessary because p and e of each subwaveguide ap-

pear in the equations for the other. They do not imply

that e and ,u are different for each mode.

In the following discussion we shall consider only the

case of coupling between two modes, one in each sub-

waveguide.

If we assume propagation of the form e–rg for the

composite system, we obtain

Then the coupling equations (lOa) and ( 10b) can be

reduced to

Hence T2 is given by
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When b = 2a, for example, we find that P = 1.14z-/b.4 It

follows that

and

(16)

In order to obtain good approximations with a few

modes (preferably two), care must be taken in the

choice of modes. For instance, inspection of (11) and

(12) will show that illi~ and Mkf tend to be small when

the dielectric constant of the open-circuit waveguide

(cJ is large. Therefore, if one of the regions has a large

dielectric constant, the use of open-circuit modes in

this region, and of short-circuit modes in the second

region, will insure small coupling between E-modes in

the subwaveguides. For dielectric constants larger than

10, the subwaveguides are practically decoupled from

each other, and the propagation constants can be found

easily. For H-modes, the same advantage is gained if

short-circuit modes are used for regions of high w In

either case, for sufficiently high frequencies, (11) and

(12) show that the modes tend to decouple, so that the

propagation constants are those of each subwaveguide,

taken by itself.

Fig. 3—Circular waveguide half-filled with dielectric material.

A. Weak Coupling (62 large compared with cl)

As an example of how these approximations can be

found, we shall take the case of a circular waveguide,

half-filled with dielectric material (Fig. 3). We are

looking for the dispersion characteristics of the circular

symmetric TMu (or -Z?OJ mode.

Assuming that the two systems are completely de-

coupled, we solve for the open-circuit modes in the di-

electric region. The boundary conditions are:

y=a,
) H$ = 0(

The solution for the dielectric subwaveguide is found

by solving:

and

Jl(pa) Ji@b)
_ .— .
Nl(pa) No(pb)

(27r)’ (1.147r)’
I’z=-p. –—= – k:~gz b2

“2=w”0’0[:1-[YT

or

where CT= eJgo.,

Finally, we obtain the approximate relationship

h’

[1

~2

= %’

[1
–1.3ti .

x
(17)

The exact boundary-value problem has been solved for

this case, and the propagation characteristics have been

plotted by Marcuvitz.5 The reader will see that the

curves (except for c = 2.54) shown there ~are described

very accurately by (17).

B. Synchronous Coupling

For low values of # and ~, the coupling terms cannot

be ignored. In order to obtain good approximations in

these cases, we take advantage of the fact that when

the propagation constants of two modes are approxi-

mately equal, the contribution from all other modes

may be neglected. If two modes are so chosen that their

@ characteristics cross each other within the frequency

range that is of interest, we can expect good approximat-

ions. To illustrate the method, we have calculated the

propagation constants of the fundamental mode of a

rectangular waveguide half-filled with dielectric of di-

electric constant El= 2.45 CO. (See inset, Fig. 4.)

The fundamental mode can be found by coupling the

TE1O modes of each subwaveguide. The approximation is

good if we choose short-circuit modes in the dielectric

(subwaveguide 1) and open-circuit modes in the air

(subwaveguide 2) because the ~-~ curves of these TEIO

modes cross. Each of these modes is the dominant mode

in its respective subwaveguide, and the crossing point is

near the cutoff of each. For this simple case, (15) re-

duces to

4 E. Jahnke and F. Erode,. “Tables of Functions with Formulae
and Curves, ” Dover Publications, Inc., New York, N. Y., 4th edi-
tion, pp. 207–208; 1945.

5 N. Marcuvitz, “Waveguide Haqdbook, Radiation Laboratory
Series, ” Vol. 10, McGraw-Hall Pubhshmg Company, Inc., New York,
N. Y., p. 395; 1951.
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Fig. 4—Propagation in rectangular waveguide
half-filled with dielectric material.

where

[1

2

rlz=plz–klj= : —
d

koz = W2/.L060,

lr 4ir
K=

d~d(a – d) = a’”

[1
2 k02
~o

ko’

A few algebraic transformations lead to

(32=-+{[’- ‘38[91

i {[’-’’[w+”]

If we solve for the cut-off wavelength, we find that

a/& = 0.34 or a/hC = 0.74. Here we see that we obtain

two solutions for A,(X) as a result of the coupling be-

tween the modes in the two subwaveguides. One is a

slow wave, and the other a fast wave.

The results of oqr calculation are plotted in Fig. 4 and

compared with the results of an exact computation

based on the boundary-value formulation.b
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CORRECTION

R. C. Johnson, author of “Design of Linear Double where

Tapers in Rectangular Waveguides, ” which appeared A

on pp. 374–378 of the July 1959 issue of these TR~NS-
A,o =

%“1 – (A/2ao)2
ACTIONS has brought the following corrections to the

attention of the Editor.
A

X,1 =
The first line under (2) should read ‘iwhere -y- is the <1 – (k/2al)’ “

propagation constant in the mth segment. ”

The expression for b above (7) should be

bl – bo
b= b(x)= bO+—

L ‘“

The imaginary operator was left out of the exponent

term of (19) ; it should be

“[b, – b~ b, – bo
r=~ — exp (— i4mL/&) — —

81rL/A, b, bo 1. (19)

The close parenthesis symbol was left out of the

The integral in (14) can be evaluated in closed form; cosine term in (20) ; it should be

therefore, instead of determining 1 through the use of

(15), it is preferable to use lrl=&
1[ ()2

1–; 1+ :

L

[

2al

1~+arctan ~ – arctan ~ ,
()

1/2
—— —— – 2 ; cos (&rL/A,)

2(al – aO) X,l , 1
. (20)
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