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Fig. 11—Comparison of the measured and theoretical total attenua-
tion of the trough line TEs mode as a function of frequency.
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and being smaller than the corresponding parallel plate
line with comparable attenuation and power handling
characteristics. The guide geometry and magnetic fielc
configuration are appropriate for the fabrication of fer
rite devices employing transverse magnetization.

The measurements of guide wavelength, rate of fielc
decay and attenuation verify the theoretically predictec
properties of this structure.
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Coupling of Modes in Uniform, Composite
Waveguides*

L. C. BAHIANAY{ axp L. D. SMULLINY

Summary—The principle of coupling of modes is used to com-
pute the phase constant in a uniform waveguide filled with two
different dielectric materials. The natural modes of two hypothetical
waveguides filled with the different dielectrics are computed. The
propagation of the combined system is computed by considering the
coupling between the two sets of modes. Comparison is made be-
tween the approximate theory and an exact theory.

I. INTRODUCTION

HE expression “uniform, composite waveguide”
Tis used in this paper to describe any hollow metal-

lic cylinder of arbitrary cross section filled with
two or more homogeneous isotropic materials. Both the
structure and the materials are uniform in the direction
of propagation. Familiar examples of uniform, compos-
ite waveguides are waveguides partly filled with dielec-
tric or magnetic material. The solution of the boundary
value problem in such waveguides invariably leads to
transcendental equations. Numerical solutions for a
few particular cases have been published.!
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A different formulation of the problem is presented
here and applied to the case of lossless waveguides con-
taining two media. The fields are expressed in terms of
the natural modes of two hypothetical waveguides,
found by imposing short-circuit (#XZE=0) or open-
circuit (72X H=0) constraints at the boundary between
the two media. Maxwell's equations are then trans-
formed, by the use of conventional techniques, into an
infinite set of coupled transmission-line equations. Al-
though this formulation is completely general, its prac-
tical usefulness stems from the possibility of obtaining
approximate solutions without cumbersome numerical
computation.

II. FORMULATION OF THE PROBLEM
A. Equivalent Current Sheets

Fig. 1 shows the cross section of a composite wave-
guide. Surface S; is the metallic envelope. Surface .S, is
the boundary between the two media. The solution of
Maxwell’s equations in medium 1 is unique if either
A X E or 41X H is specified over the boundary. The same
is true of medium 2. Let 72X Fa(Sy), where E» is the un-
known field in region 2, be specified over S;. Then we
can solve Maxwell’s equations in medium 1. In order tc
do this, surface S, is replaced by a metallic wall S (short
circuit, with #XE=0) and a magnetic current sheet
K,.= 71X Ex(Ss). Mathematically, this is equivalent tc
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transforming a homogeneous differential equation with
inhomogeneous boundary conditions into an inhomo-
geneous differential equation with homogeneous bound-
ary conditions. The solution of Maxwell’s equations in
medium 1 gives us the tangential magnetic field,
AX H;i(Sy), at the boundary .S;. Next, we solve Max-
well’s equations in medium 2, with 7 X H1(S:) specified
over S,;. This time, we replace the surface S, by a mag-
netic wall .S (open-circuit, with %X H =0) and an electric
current sheet K,=#XH:(S:). By this procedure, we
have split the original boundary value problem into
one of two conventional waveguides, driven by electric
or magnetic surface currents (Fig. 2). The two hypo-
thetical waveguides will be called subwaveguides 1
and 2.

X H,
Sy
OPEN
GIRGUIT
SHORT
CIRGUIT

Fig. 2—Equivalent driving currents and boundary constraints.

B. Short-Circutt and Open-Circuit Expansions

The fields in the subwaveguides can be expanded in
terms of E-modes and H-modes that satisfy either short-
circuit or open-circuit conditions at the common
boundary. If the fictitious wall .S is short-circuited, the
modes will be short-circuit modes; if .S is open-circuited,
the modes will be open-circuit modes. In either case,
the modes are solutions of the scalar Helmholtz equa-
tion. These modes form a complete set.

The E-modes are given by the following:

éte = - Vz¢,
he = kX &°, and
Pe

where I' is the propagation constant, k is the unit vector
in the z-direction, ¢ satisfies the equation V,2¢ 4 p,2¢p =0,
and the boundary conditions are:
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¢ = Q0 over S and S,

¢ = 0 over .Sy L
for open-circuit modes.
V;(}S = Qover S

for short-circuit modes,

The H-modes are given by the following:

]’lth = — VA&,
é* = ht X E, and
;bh

where I' is the propagation constant, ¥ satisfies the
equation V.2 +p%0 =0, and the boundary conditions
are:

7i-Vap = OoverSandS;

Y = OoverS}
i-Vay = 0 over Sy

for short-circuit modes,

for open-circuit modes.

In terms of these modes, the transverse fields in either
subwaveguide can be expressed? as

v ; Dz, 9)
T, - iuz)hq(x, ». @3)

This expansion includes both E and H modes, but the
choice of the imaginary wall determines whether they
are short-circuit or open-circuit modes.

If we use the orthogonality condition,

[ @ux e = s, ()
then the amplitudes V;and I; for the jth mode are

Vi(2) =f (Eshij X k)da

I6) = f (Ho kX e)da, )

and the integration is extended over the cross section
of the subwaveguide.

C. Solution of Maxwell's Equations in the Subwaveguides
Maxwell’s equations for harmonic time-dependence
in a loss-free region containing electric and magnetic
currents are
VX E = — jopH — J,, and
VXﬁ=jweE+7e.
After separating the fields into longitudinal and trans-

verse components, the use of (3) vyields, for the longi-
tudinal components,

2 1. A. Haus, “Microwave Circuits,” Course 6.621 Class Notes,
Mass. Inst, of Tech Cambridge, Mass.; 1959. (Unpublished.)



456
1 2 - - Jex
E, = - Z I,-[Vt-htj X k] — and
Jwe j—1 Jwe
1 & T e
Ho=—2 V[Vik X &;] — —~- (6)
JWH =1 Jwr

By using (3)-(6), the transverse part of Maxwell's
equations for the jth mode can be transformed into the
following:

av,

- = jou,l; -I— I +f (T hiy)da

-I——— f (Je-2:)da

dI] i
—7——]weV + ph V +f(] “y)da

P4
o f Ton-hinj)da. o)

Equations of this form have been derived, for metallic
waveguides, by Marcuvitz.? They are extended here for
open-circuit modes. Detailed proofs are omitted.

D. Coupled Transmission-Line Equations

The coupling equations for a composite waveguide
containing two media will now be derived. The subscript
7 has been retained for the subwaveguide with the short
circuit imposed at the wall, and the subscript 2 has been
used for the subwaveguide with the open circuit im-
posed at the boundary.

For the short-circuited subwaveguide,

II

T

Kn(S) = # X E(S),
7. =0,

(8)

where E°(S) is the electric field in the open-circuited sub-
waveguide at the boundary .S.
Similarly, for the open-circuited subwaveguide,

Je = E.(S) = @ X H(S),
Tm = (9)
Use of (7)—(9) yields the coupling equations:
av,
L M, I; 4 20 Myl
2
y and (10a)
di,
- = N,Vi+ 2 NaVs
dz k
av
- ;f = Muli + 2 MyI;
%
’ : (10b)
aly,
— —— = NuVi+ 22 NuV;
dz 7

¢ N. Marcuvitz, “Representation of electric and magnetic fields,”
J. Appl. Phys., vol. 22, pp. 806-819; June, 1951.
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where the sums are over all the modes of the opposite
subwaveguide, and the coupling terms M and N are
given by

. pei’ 1 -
M = o+t —— [ (G- Fu)ds
Jwe; Jwe
My = f (-84 X hiy)ds
]wek
(11)
. ons’
N,y = joe, + - .
Jwi;
T's, o -
Njk = . f (n'etk X ]lZJ)ds
J Wt
and
Pek
My, = jw,uk +
]wek
My = f (7~ X hij)ds
jwek
5 (12)
W
Ny = joer + -+ "—*—f (en-ea)ds
Jowr  Jeu;
T,
Ny = ——F (-84 X h.;)ds
]wﬂf

The integrals are taken along the boundary, in the
transverse plane. The subscripts j and %k have been used
on u and €, to avoid inserting a second subscript. They
are necessary because u and e of each subwaveguide ap-
pear in the equations for the other. They do not imply
that eand p are different for each mode.

In the following discussion we shall consider only the
case of coupling between two modes, one in each sub-
waveguide.

If we assume propagation of the form e T: for the
composite system, we obtain

av, dl;

- = - PVJ, = - FIJ':
dz ds

Vi % aL V) 13)
dz B w dz B - (

Then the coupling equations (10a) and (10b) can be
reduced to

[T2 — (M;N,, + M)V
- [ijNjk + M]kZ\Tk];:[Vk = 07
- [(Mkka] + MkJZ\Tj]')]V]

+ [T — (MuNw + MNa) Ve = 0. (14)
Hence I'? is given by
= 3T, + Tw) £ V(T — Tw)® + 4T3 Tw], (15)
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where
Ty = MiiNj; + MaNu,
Tie = MuNuw + MgV,
Tjk = ijNjk + Mjkak, and

Tkj = M/;kaj -+ M}chjj. (16)

I11. APPLICATIONS

In order to obtain good approximations with a few
modes (preferably two), care must be taken in the
choice of modes. For instance, inspection of (11) and
(12) will show that M, and Mz, tend to be small when
the dielectric constant of the open-circuit waveguide
(&) is large. Therefore, if one of the regions has a large
dielectric constant, the use of open-circuit modes in
this region, and of short-circuit modes in the second
region, will insure small coupling between Z-modes in
the subwaveguides. For dielectric constants larger than
10, the subwaveguides are practically decoupled from
each other, and the propagation constants can be found
easily. For H-modes, the same advantage is gained if
short-circuit modes are used for regions of high u. In
either case, for sufficiently high frequencies, (11) and
(12) show that the modes tend to decouple, so that the
propagation constants are those of each subwaveguide,

e
)

Fig. 3—Circular waveguide half-filled with dielectric material.

A. Weak Coupling (& large compared with e)

As an example of how these approximations can be
found, we shall take the case of a circular waveguide,
half-filled with dielectric material (Fig. 3). We are
looking for the dispersion characteristics of the circular
symmetric TM; (or Eo) mode.

Assuming that the two systems are completely de-
coupled, we solve for the open-circuit modes in the di-
electric region. The boundary conditions are:

E,=0;
H, =0.

r =D,

r = gq,

The solution for the dielectric subwaveguide is found
by solving:

r? = p?— k; = p? — wuoe;
and

Ji(pa) _ To(p0)
Ni(pa)  No(pd)
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When b=2a, for example, we find that p=1.14x/b.* It
follows that

(2m)? _ (114
)\gZ - b2 2

€ 11471' 2
-l 2]-[147]
€9 b

or

M= —g=

[271']2 [271']2 [1.14# 2
- = | & — )
A A b ]
where e, =¢€/¢€0..
Finally, we obtain the approximate relationship

Dk M E
l:—d:l = ¢ — 1.3[—:' .
N 20

The exact boundary-value problem has been solved for
this case, and the propagation characteristics have been
plotted by Marcuvitz® The reader will see that the
curves (except for e=2.54) shown there are described
very accurately by (17).

(17)

B. Synchronous Coupling

For low values of u and ¢, the coupling terms cannot
be ignored. In order to obtain good approximations in
these cases, we take advantage of the fact that when
the propagation constants of two modes are approxi-
mately equal, the contribution from all other modes
may be neglected. If two modes are so chosen that their
B-w characteristics cross each other within the frequency
range that is of interest, we can expect good approxima-
tions. To illustrate the method, we have calculated the
propagation constants of the fundamental mode of a
rectangular waveguide half-filled with dielectric of di-
electric constant e;=2.45 €. (See inset, Fig. 4.)

The fundamental mode can be found by coupling the
TE:, modes of each subwaveguide. The approximation is
good if we choose short-circuit modes in the dielectric
(subwaveguide 1) and open-circuit modes in the air
(subwaveguide 2) because the w-G curves of these TEq
modes cross. Each of these modes is the dominant mode
in its respective subwaveguide, and the crossing point is
near the cutoff of each. For this simple case, (15) re-
duces to

I? = i[(T? + I'Y) £ V(T® — T2 F 4K?],

4 E. Jahnke and F. Emde, “Tables of Functions with Formulae
and Curves,” Dover Publications, Inc.,, New York, N. Y., 4th edi-
tion, pp. 207-208; 1945.

8 N. Marcuvitz, “Waveguide Handbook, Radiation Laboratory
Series,” Vol. 10, McGraw-Hill Publishing Company, Inc., New York,
N. Y., p. 395; 1951,
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Fig. 4—Propagation in rectangular waveguide
half-filled with dielectric material.
where
ks 2 € 2
TE=p2—k2=|—| —|—|ko
d €0

K = = —,
dvdla — d) a2
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A few algebraic transformations lead to

()il
=]

If we solve for the cut-oftf wavelength, we find that
a/A=0.34 or a/A\.=0.74. Here we see that we obtain
two solutions for A,;(A) as a result of the coupling be-
tween the modes in the two subwaveguides. One is a
slow wave, and the other a fast wave.

The results of our calculation are plotted in Fig. 4 and
compared with the results of an exact computation
based on the boundary-value formulation.®
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§ Moreno, op. cit., p. 192.

CORRECTION

R. C. Johnson, author of “Design of Linear Double
Tapers in Rectangular Waveguides,” which appeared
on pp. 374-378 of the July 1959 issue of these Trans-
ACTIONS has brought the following corrections to the
attention of the Editor.

The first line under (2) should read “where «,. is the
propagation constant in the mth segment.”

The expression for & above (7) should be

by — b

b=1>b(x) =by+ x.

The integral in (14) can be evaluated in closed form;
therefore, instead of determining ! through the use of
(15), it is preferable to use

L 2a¢ 2aq 2a;
= —————| — — —— 4 arctan — — arctan — |,
2(a1 ~— ag) LAy Ag0 Ago Ag1

where
A

V1 — (A 2a0)?
o
V1= (V24

The imaginary operator was left out of the exponent
term of (19); it should be

Ago =

)\gl =

i bl‘bo bl_bﬂ
T = exp (—idwxL/\,) — . (19
Mm[ S e (L) — 2 ] (19)

The close parenthesis symbol was left out of the
cosine term in (20); it should be

1 b 2
LG
bo

Y
bl 1/2
-2 <7> cos (41rL/)\g)} . 20)

| T




